A mechanical erosion model for two-phase mass flows: 
Tackling a long standing dilemma of mass mobility

Jan-Thomas Fischer (1), Shiva P. Pudasaini (2), and Martin Mergili (3)
(1) Austrian Research Centre for Forests - BFW, Department of Natural Hazards, Innsbruck, Austria (jt.fischer@bfw.gv.at),
(2) University of Bonn, Department of Geophysics, Bonn, Germany, (3) Institute of Applied Geology, BOKU University of 
Natural Resources and Life Sciences Vienna, Austria

Landslides and debris flows can dramatically increase their volume and destructive potential, and become ex- 
ceptionally mobile by entraining bed sediment and fluid. Additionally changes in flow bed by erosion-deposition 
mechanisms, and thus changes in the driving force components, play a critical role in debris flow dynamics. Usu- 
ally erosion related geophysical mass flows are more mobile than without erosion. However, this fact has never 
been explained mechanically explicitly and unambiguously. In literature, it is mentioned that erosion results in 
shorter travel distance due to the energy lost in erosion, but it has also been argued that, e.g., due to the added 
mass, the debris travels longer distance. The dilemma of erosion and flow mobility however is, that no clear expla- 
nation and derivation exists to mechanically explicitly describe the state of mobility. To cope with these challenges 
a two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-
deposition-depths, incorporating the inherent physical process including momentum and rheological changes of 
the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum 
productions or losses in conservative model formulation is essential for the physically correct and mathematically 
consistent description of erosion-entrainment-deposition processes. We show that mechanically deposition is the 
reversed process of erosion. We derive mechanically consistent closures for coefficients emerging in the erosion 
rate models. We prove that effectively reduced friction in erosion is equivalent to the momentum production. With 
this, we solve the long standing dilemma of mass mobility, and show that erosion enhances the mass flow mobility. 
The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated 
with the frontal ambient-drag with erosion. Thus, the novel enhanced real two-phase model reveals some major 
aspects of the mechanics associated with erosion, entrainment and deposition. The new erosion model has been 
implemented with the advanced open-source GIS mass flow simulation tool r.avaflow. We demonstrate this imple- 
mentation for selected generic case studies.

References:

2011JF002186.